

Electric energy storage Elia Group Approach

Manuel Galvez June 26, 2013

- Larger and larger transit flows
- Generation assets without much flexibility
- Reliable electricity transmission from North to South
- Generation exceeding consumption and becoming highly variable

"The" balancing challenge

Generation units were built to follow consumption, ... tomorrow, the load will have to follow (variable) generation.

The quest for Ancillary Services

Limited (flexible) fossil plants

- 5500MW inflexible Nuclear (biggest 1076 MW);
- 3700MW CCGTs (non-spinning)
- RES poorly inflexible due to support schemes (€/MWh)

- 1 big actor (65% prod. capacity)
- few providers of AS
- decreasing running hours of CCGT's
- Increasing costs of AS

Applications vs. technologies

Source: Alstom

Storage and Power markets

Different storage technologies = different role

Elia Group I&K priorities STORAGE Programme

Elia Group I&K Priorities R&D projects on Storage

eStorage (FP7 programme)

- Technical & economic feasibility of re-engineering 270 MW pump-hydro storage (PHS) to variable-speed in T- & P-mode
- Evaluate & propose new market mechanisms & regulatory/policy recommendations for integration of storage

ADELE-ING

- Construction of first adiabatic compressed air energy storage (CAES) technology demonstration plan in Germany
- Assess relevance for the German electricity system (optimal market and grid integration)

SDL-Batt

- Demonstration of 10 MW battery storage, and assessment of economic participation in AS: today, in 2020 and 2050
- Investigate to what extend batteries could contribute to maintain system stability.

Belgian electricity system Business cases

Energy Island (Offshore – Belgian Coast)

- 2,5 km diameter
- 10 m above sea level
- 300 MW

http://gtms1303.wordpress.com/2013/01/28/an-artificial-energy-atoll-at-the-belgian-coast/

- Potential services:
 - Reserves and/or Arbitrage
 - Bulk storage for reliable integration of off-shore wind

DG ENER Working Paper: 'Future role & challenge of Energy Storage '

- bridging the gap between RES and back-up power
- ✓ will be needed to manage >20% RES
- integration in different locations with adequate (regulated) incentives
- ✓ need appropriate market signals & EU-level market
- ✓ Connection & harmonisation of EU level ID & balancing market is a precondition for energy storage development \rightarrow needs to be addressed urgently
- ✓ High priority: reflect on ownership of storage (regulated vs. deregulated)

P. Lowe (EC):

- Storage is by definition, not generation: storage has a negative efficiency and costs, irrespective of technology.
- Storage cannot be classified as generation, irrespective of its technology, size or location.
- Therefore, storage may be <u>used</u> by all market actors, including TSO's, provided they do not compete in the generation market with the stored electricity.

Thank you for your attention