

**Contract N°:** IEE/10/222/ SI2.591026 **Duration:** 05/2011 – 04/2014

#### Methodology estimating the energy storage needs



The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.





Development of renewable energies

Calculation of residual load

Calculation of total energy storage needs Seperation of long and short term energy storage needs





### **Development scenarios for RE**

| Target country | 40 % RE                                                  | 80 % RE                                          | Import/Export                                | Heating sector   |
|----------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------|
| Austria        | Already more than<br>40 % RE<br>→2020 scenarios<br>A,B,C | 2050 scenarios<br>GREEN, BAU                     | Yes, combined<br>system Germany -<br>Austria | No               |
| Denmark        | Scenarios 2020 A,B,C<br>Different wind<br>development    | One scenario                                     | Yes, import/export via<br>AC to Germany      | Yes, for 80 % RE |
| Germany        | 3 scenarios A,B,C<br>Different RE<br>development         | 3 scenarios A,B,C<br>Different RE<br>development | No                                           | No               |
| Greece         | 2 Scenarios A,B<br>Strong PV, strong<br>Wind             | 3 scenarios A,B,C<br>Different RE<br>development | No                                           | No               |
| Ireland        | Scenarios 2020 A,B,C<br>Different wind<br>development    | One scenario                                     | Yes, import/export via<br>HVDC to GB         | No               |
| Spain          | 2 Scenarios A,B<br>Strong PV, strong<br>Wind             | 2 Scenarios A,B<br>Strong PV, strong<br>Wind     | No                                           | No               |

**Development of renewable** energies

Calculation of residual load

Calculation of total energy storage needs

Separation of long and short term energy storage needs



#### Time series

- Defining a reference scenario → 2011
- Feed-in curves of PV, Wind and hydropower for reference scenario from national TSOs
- Load curves of reference scenario from national TSOs and ENTSO-E
- Normalization of feed-in and load curves
- Scaling the feed-in and load curves accordingly to the expected installed RE to reach the desired share of renewable energies
- All data in hourly values





## Calculation of residual load

"Residual load = load demand that has to be covered by controllable power plants or import/export of energy"





Development of renewable energies

**Calculation of residual load** 

Calculation of total energy storage needs

Separation of long and short term energy storage needs

ERGY

INTEL

UROP

E.





## **Operating strategy for ESS**



- Energy storage system (ESS) follows a peak shaving valley filling operation strategy
- Intelligent operation strategy to integrate the most renewable energies possible
- Integration of up to 6 different technologies
- No focus on electricity spot market prices





# Determination of storage needs

- Using the described algorithm with two technologies
- First the existing and planed energy storage facilities
  - For Germany: PHES facilities with 8 GW installed pump and turbine power and a capacity of 60 GWh
- Second an energy storage system with unlimited power and capacity (ESS 2)
- The unlimited nature of ESS 2 ensures that all renewable energies can be integrated
- The actual used power and capacity of ESS 2 is an indicator for the total energy storage needs





#### **General assumptions**

- No bottlenecks in transmission grids
- No import/export
- DSM/DSR as well as electric vehicles are regarded as possible additional energy storage system
- Increasing flexibility of conventional power plant mix





## System stability

- System Non Synchronous Penetration limit (SNSP)
  - Maximum share of generation units with generator speeds asynchron to grid frequency
- Technical Minimum (TM)
  - Must run units of conventional power plants

| Target country | 40% RE           | 80 % RE           |
|----------------|------------------|-------------------|
| Austria        | -                | -                 |
| Denmark        | -                | -                 |
| Germany        | TM: 0 GW – 10 GW | -                 |
| Greece         | TM: 3.7 GW       | TM: 0.4 GW – 2 GW |
| Ireland        | SNSP: 75 %       | -                 |
| Spain          | TM: 18 GW        | TM: 0 GW - 10 GW  |

Development of renewable energies

Calculation of total energy storage needs

arorage meeda

Separation of long and short term energy storage needs



#### Simulation results

#### Germany, scneario 80 %, equal development wind and PV





# Simulation results (no SNSP/TM)

| Scenarios<br>2020 | Needed power<br>[GW] |             | Needed capcity<br>[GWh] | Capacity factor |             |         |
|-------------------|----------------------|-------------|-------------------------|-----------------|-------------|---------|
|                   | Charging             | Discharging |                         | Charging        | Discharging | Total   |
| AT-A              | 0                    | 0           | 0                       | 11.63%          | 9.58%       | 21.21%  |
| AT-B              | 0                    | 0           | 0                       | 9.00%           | 7.30%       | 16.30%  |
| AT-C              | 0                    | 0           | 0                       | 7.00%           | 5.67%       | 12.68%  |
| DE-A              | 0                    | 0           | 0                       | 29.51 %         | 24.01 %     | 53.52 % |
| DE-B              | 0                    | 0           | 0                       | 27.15 %         | 22.04 %     | 49.19 % |
| DE-C              | 0                    | 0           | 0                       | 30.38 %         | 25.12 %     | 55.50 % |
| DK-A              | 2.33                 | 2.36        | 55.22                   | 10.6 %          | 8.43 %      | 19.03 % |
| DK-B              | 2.26                 | 2.27        | 46.71                   | 10.6 %          | 8.51 %      | 19.11 % |
| DK-C              | 2.19                 | 2.18        | 38.68                   | 10.6 %          | 8.63 %      | 19.23 % |
| IR-A              | 1.83                 | 1.79        | 59.12                   | 11.17 %         | 8.89 %      | 20.06 % |
| IR-B              | 1.73                 | 1.60        | 14.32                   | 10.59 %         | 9.23 %      | 19.23 % |
| IR-C              | 1.86                 | 1.76        | 70                      | 10.76 %         | 8.91 %      | 19.67 % |

 Development of renewable energies
 Calculation of residual load
 Calculation of total energy storage needs
 Separation of long and short term energy storage needs

 etiat disa
 etiat disa
 etiat disa
 storage needs
 Supported by (2) erougde useds

EUROPE



#### Simulation results

| Scenario | Needed Power<br>[GW] |               | Needed<br>Capacity | Capacity Factor   |                   |                    |
|----------|----------------------|---------------|--------------------|-------------------|-------------------|--------------------|
|          | Charging             | Discharging   | [GWh]              | Charging          | Discharging       | Total              |
| Austria  | 0 - 2,98             | 0             | 0                  | 9.65% -<br>10,38% | 8,34% -<br>10.37% | 18,72% -<br>20.03% |
| Germany  | 31,85 - 55,16        | 25,17 - 29,04 | 950 - 1.534        | 4,97% -<br>5,43%  | 4,48% -<br>8,07%  | 9,45% -<br>13.43%  |
| Denmark  | 4,85                 | 3,25          | 660,75             | 10,8 %            | 11,3 %            | 22,1 %             |
| Ireland  | 6.8                  | 4.3           | 2.700              | 12,4 %            | 9,9 %             | 22,3 %             |
| Spain    | 35.31 – 44.32        | 18.13 - 19.56 | 2.143 - 4.367      | 4,89% -<br>6,39%  | 7,52% -<br>13,05% | 12,41% -<br>19,44% |
| Greece   | 7.50 - 10.56         | 2,17 - 2.79   | 172 – 1.400        | 3,58% -<br>4,71%  | 9,94%<br>-13,45%  | 8,29% -<br>18,61 % |





### Simulation results (Ireland)



time in h







### Simulation results (Denmark)









## Simulation results (Denmark)

www.store-project.eu

| Western Denmark     |                  | 2012 | 2020 | 2035 |
|---------------------|------------------|------|------|------|
| Heat pumps (DH)     | MW <sub>el</sub> | 0    | 44   | 82   |
| Heat pumps (indiv.) | MW <sub>el</sub> | 40   | 222  | 631  |
| Elec. Boilers (DH)  | MW <sub>el</sub> | 207  | 244  | 244  |
| Total               | MW <sub>el</sub> | 247  | 510  | 957  |

- During positive residual load the heat demand is covered by the CHP, bio fueled and centralized power plants. The heat storage is used accordingly to the operation planning of the particular power plant. The planning of the operation should be in a way that the storage capacity is fully available when a surplus of renewable energy is expected
- During periods with surplus of ٠ renewable energy the heat storage capacity is fully available





#### Further improvement of the algorithm





# Seperation of short and long term storage needs

For the separation of the total energy storage needs into short and long term storage needs, some technical limitation can be set:

- Benchmark for separation
- Power and capacity limitations
- Setting minimum capacity factor
- Cycle efficiencies





# Seperation of short and long term storage needs

Input parameters:

- Scenario A
- Benchmark set to T=48h
- Short term ES (SES) limited to 12 GW and 100 GWh
- Cycle efficiency of SES set to 85 %
- Cycle efficiency of LES set to 40 %

Results:

- High CF of SES: 36.5 %
- High needed power for LES (10 GW for charging, 7.5 GW for discharging)
- Low CF of LES: 17.22 %
- Rejected energy from RE: 6.3 TWh
- Increasing the CF of LES, the rejected energy will increase as well





### RE input data

- Feed-in data from renewable energies can now be obtained by
  - Weather data from national weather services, the internet platform S@tellight and the meteorological data base Meteonorm®
  - Developed Wind and PV/CSP models
  - Geographical allocation of existing units

Models were validated with actual feedin data of different countries

 Load demand is calculated with synthetic load profiles and real load demand data provided by national TSOs and ENTSO-E





### Including the power plant mix

Einsatzplanung Kraftwerkspark in GW 70 60 50 40 30 20 10 0 -10 -20 -30 800 h 100 200 300 400 500 700 600 Energieüberschuss Biomasse Kernkraft Braunkohle Steinkohle GuD Gasturbine Leistungsmangel





# Defining different operation strategies

- Using ESS only for RES-E integration
- Minimum CO<sub>2</sub> emissions
- Minimum electricity genertation costs
- Minimum new installed power plant capacity





## Thank you for you attention

#### Thomas Weiß

#### **Helmut Schmidt University**

Holstenhofweg 85

22043 Hamburg, Germany

Phone: +49-40-6541-2163

Mail: thomas.weiss@hsu-hh.de

http://www.hsu-hh.de





P

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

Centro nacional de energías renovables

national renewable energy centre

#### EMD International A/S

C



Malachy Walsh and Partners Engineering and Environmental Consultants

Helmut schmidT Universität







