

## Bulk Energy Storage in Future Electricity Systems in Europe

Michael Papapetrou, Thomas Maidonis\*, John Anagnostopoulos

\* WIP Renewable Energies, Phone: +49 89 720 12 720, thomas.maidonis@wip-munich.de



Co-funded by the Intelligent Energy Europe Programme of the European Union The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

Owned and Produced by:





Presented by:



Supported by:

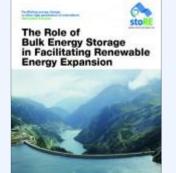
www.powergeneurope.com www.renewableenergyworld-europe.com



# **Project Summary & Objectives**

The project aims to unlock the potential for energy storage infrastructure, through:

- Analysis of the energy storage status and potential
- Assessment of the environmental considerations
- Reviewing together with key stakeholders the regulatory and market framework conditions
  - at European level
  - in the 6 target countries
- Improving the general understanding of the energy storage benefits for the European power system.






## Results

- □ Current Status, Role and Costs of Energy Storage Technologies
- □ The Role of Bulk Energy Storage in Facilitating Renewable Energy Expansion
- Environmental Performance of Existing Energy Storage Installations
- □ Furthering the Sustainable Development of Bulk Energy Storage Facilities
- Guidelines for the development of PHES in environmentally sensitive sites
- European Regulatory & Market Framework for Electricity Storage Infrastructure
  Energy Storage Needs in the target countries

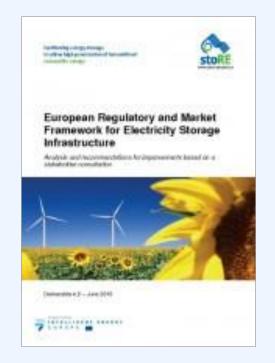











### www.store-project.eu



## Part 1

## European Regulatory & Market Framework for Electricity Storage Infrastructure

www.store-project.eu



- Identify the key elements of the European market framework that potentially create unfavourable conditions for the development and operation of electricity storage infrastructure
- *Provide policy makers with recommendations for possible improvements*



**Market for Europe** 

Single Energy

Energy Infrastructure

Package

# Directives, policies, funding instruments and other initiatives

- The Electricity Directive Directive 2009/72/EC
- The Renewable Energy Directive Directive 2009/28/EC
- Framework Guidelines and Network Codes
- Better Governance for the Single Market COM(2012) 259
- Making the Internal Energy Market Work COM(2012) 663
- Blueprint for an integrated European energy network COM(2010) 677
- Guidelines for trans-European energy infrastructure COM(2011) 658
- Establishing the Connecting Europe Facility COM(2011) 665
- The Ten Year Network Development Plan (TYNDP)
- The list of "Projects of Common Interest" (PCIs)
- Policies, directives & other initiatives directly related to RE



# Survey Methodology

 Feedback Collection and analysis of from overall 55 experts, through a questionnaire, telephone interviews, four round table discussions, feedback to draft versions of the report, advisory board meetings

| Utilities /<br>Industry | Associations                                | Developers | Research Institutes                         | TSOs and others                    |
|-------------------------|---------------------------------------------|------------|---------------------------------------------|------------------------------------|
| DONG Energy             | EASE                                        | Gaelectric | École Polytechnique<br>Fédérale de Lausanne | 50Hertz                            |
| E.ON                    | EREF                                        | HSE Invest | JRC                                         | ELIA                               |
| Endesa                  | HEA                                         | IWUL       | KU, Leuven                                  | Red Eléctrica de España            |
| RWE                     | Renewables Grid<br>Initiative (RGI)         | UPB/ROSHA  | RSE                                         | Philippe & Partners (law firm),    |
| Verbund                 | Climate Parliament                          | Hydrowatt  | SiTI                                        | Electricity Authority of<br>Cyprus |
| Panasonic<br>Europe     | Smart Energy for Europe<br>Platform (SEFEP) | ELZACO Ltd | University of Zagreb                        |                                    |



## Recommendations to the EC

**1.** Re-evaluate the exemption of PHES from the financing provision of the **infrastructure package**, restricting only financing to plants that could be profitable without support.

**2.** Officially clarify the applicability of the **unbundling principle** to electricity storage (Article 9(1) of the Electricity Directive), by including a clear definition of electricity storage and propose an approach that:

- Introduces clear restrictions to the use of electricity storage facilities by system operators if and when they are allowed some kind of control over them
- Facilitates the market selection of the most efficient solution for transmission vs. storage.
- **3.** Maintain the possibility to include in the **PCI** also projects not foreseen in the TYNDP.

**4.** Introduce **targeted regulatory interventions** and initiatives to ensure the **timely** development of storage infrastructure to the extent necessary.

5. Monitor and encourage the transposition of Electricity Directive Article 15 (7) to national legislation for transparent and market based mechanisms for balancing



## **Recommendations to ACER & ENTSO-E**

**1.** Include **definitions of electricity storage in the network codes**, also taking into account smaller scale systems, in order to facilitate the development of similar administrative procedures in the Member States for their connection to the grid.

**2.** Develop a method to calculate **grid fees** that will take the real impact of the electricity storage system on the grid into account.

**3.** Apply **common rules** across Europe regarding grid fees in order to avoid deployment of a project in one country and provision of services in another, due to different framework conditions.

**4.** Critically review the **Cost Benefit Analysis** methodology developed for the evaluation of the proposed Projects of Common Interest to ensure that it is fair and treats electricity storage projects in equal terms with transmission and generation projects.



# Recommendations to project developers & other stakeholders

**1.** Closely **monitor the on-going development of the network code on balancing** in order to ensure that electricity storage facilities will gain full access to cross border markets.

2. Monitor the transposition of Electricity Directive Article 15 (7) to national legislation for transparent and market based mechanisms for balancing

**3.** Critically review the **Cost Benefit Analysis** methodology developed for the evaluation of the proposed Projects of Common Interest to ensure that it is fair and treats electricity storage projects in equal terms with transmission and generation projects.



Part 2

## Estimating the energy storage needs in Austria, Denmark, Germany, Greece, Ireland and Spain



#### www.store-project.eu



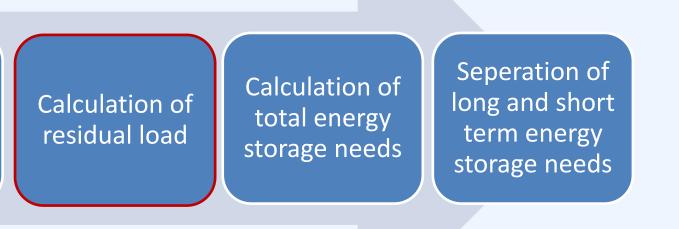


#### Calculation of total energy storage needs Seperation of long and short term energy storage needs

Renewable energy development scenarios

Calculation of

residual load

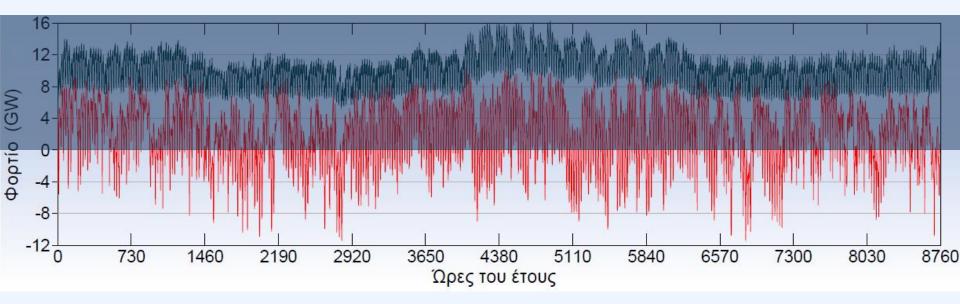



## Development scenarios in stoRE

| Target<br>country | 40% RE                                             | 80% RE                                        | Import/Export                             | Heating<br>sector |
|-------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------|
| Austria           | Already more than 40% RE<br>→2020 scenarios A,B,C  | 2050 scenarios GREEN, BAU                     | Yes, combined system<br>Germany - Austria | No                |
| Denmark           | Scenarios 2020 A,B,C<br>Different wind development | One scenario                                  | Yes, import/export via<br>AC to Germany   | Yes, for 80% RE   |
| Germany           | 3 scenarios A,B,C<br>Different RE development      | 3 scenarios A,B,C<br>Different RE development | No                                        | No                |
| Greece            | 2 Scenarios A,B<br>Strong PV, strong Wind          | 3 scenarios A,B,C<br>Different RE development | No                                        | No                |
| Ireland           | Scenarios 2020 A,B,C<br>Different wind development | One scenario                                  | Yes, import/export via<br>HVDC to GB      | No                |
| Spain             | 2 Scenarios A,B<br>Strong PV, strong Wind          | 2 Scenarios A,B<br>Strong PV, strong Wind     | No                                        | No                |








Development of renewable energies



# Calculation of residual load

### Calculation of residual load in Greece – 80% RES scenario







Calculation of

total energy

storage needs

Seperation of long and short term energy storage needs

Calculation of residual load

Development of renewable energies



## Storage needs for 80% RES Zero curtailment & Unlimited Transmission

| Countries | Additional Nee<br>[G\ | • • •         | Additional Needed<br>Stored Energy |
|-----------|-----------------------|---------------|------------------------------------|
|           | Charging              | Discharging   | [GWh]                              |
| Austria   | 0 - 2,98              | 0             | 0                                  |
| Germany   | 31,85 - 55,16         | 25,17 - 29,04 | 950 - 1.534                        |
| Denmark   | 4,85                  | 3,25          | 660,75                             |
| Ireland   | 6.8                   | 4.3           | 2.700                              |
| Spain     | 34,2 - 46,8           | 30,4 - 36,8   | 640 - 6.340                        |
| Greece    | 10,6 - 15,1           | 8 - 8,3       | 340 - 1.550                        |



## Storage needs for 80% RES Zero curtailment & Unlimited Transmission

| Countries | Additior           | Additional Needed Capacity<br>[GW] |      |                        | Additional Needed<br>Stored Energy |                                            |  |
|-----------|--------------------|------------------------------------|------|------------------------|------------------------------------|--------------------------------------------|--|
|           | Chargi             | Charging                           |      | ischarging             |                                    | [GWh]                                      |  |
| Austria   | 0 - 2,9            | 0 - 2,98                           |      | 0                      |                                    | 0                                          |  |
| Germany   | 31,85 - 5          | 31,85 - 55,16                      |      | 25,17 - 29,04          |                                    | 950 - 1.534                                |  |
| Denmark   | Scenario<br>80% RE | Addit                              |      | leeded Capacity<br>GW) |                                    | Additionally Needed<br>Stored Energy (GWh) |  |
| Ireland   |                    | Char                               | ging | Discharging            |                                    |                                            |  |
| Spain     | Equal              | 38.                                | .79  | 25.17                  |                                    | 1,308                                      |  |
|           | Wind               | 31.85                              |      | 25.74                  |                                    | 1,534                                      |  |
| Greece    | PV                 | 55.                                | .16  | 29.04                  |                                    | 950                                        |  |



## Storage needs for 80% RES Zero curtailment & Unlimited Transmission

| Countries | Additio  | Additional Needed Capacity<br>[GW]   |         |            |                     | Additional Needed<br>Stored Energy |  |
|-----------|----------|--------------------------------------|---------|------------|---------------------|------------------------------------|--|
|           | Scenario | Additionally Needed Capacity<br>(GW) |         | ity        | Additionally Needed |                                    |  |
| Austria   | 80% RE   | Charg                                | ing     | Dischargin | g                   | Stored Energy (GWh)                |  |
| Austria   | Equal    | 35.3                                 |         | 36.5       |                     | 2240                               |  |
| Gormany   | Wind     | 34.2                                 |         | 36.8       |                     | 1290                               |  |
| Germany   | PV       | 36.8                                 |         | 30.4       |                     | 640                                |  |
| Denmark   |          | Nuclear scenarios                    |         |            |                     |                                    |  |
| Denmark   | Equal-n  | 45.3                                 |         | 33.6       |                     | 6340                               |  |
| Ireland   | Wind-n   | 44.                                  | 2       | 33.6       |                     | 5000                               |  |
| Ireland   | PV-n     | 46.8                                 |         | 34.9       |                     | 4300                               |  |
| Spain     | 34,2 -   | 46,8 3                               |         | ,4 - 36,8  |                     | 640 - 6.340                        |  |
| Greece    | 10,6 -   | 15,1                                 | 8 - 8,3 |            |                     | 340 - 1.550                        |  |



## Regulatory & Market Framework in the Target Countries

What is the effect of the regulatory and market framework conditions on the development of new and operation of existing energy storage facilities in the target countries?

## Aim: Identify possible barriers

Wide consultation process + Questionnaire + Workshop

**Recommendations for improvements in the form of Action Lists** 





## Contact



- Visit <u>www.store-project.eu</u> for all project results!
- Join our discussions on the <u>Energy Storage & Grid</u> <u>Technologies group</u> in
- Check our new project: <u>www.industre.eu</u>

Thomas Maidonis

WIP Renewable Energies

Sylvensteinstr. 2, 81369

Munich, Germany

Phone: +49 89 720 12 720

Email: <a href="mailto:thomas.maidonis@wip-munich.de">thomas.maidonis@wip-munich.de</a>

www.wip-munich.de





## **Bulk Energy Storage in Future Electricity Systems in Europe**

Michael Papapetrou, Thomas Maidonis\*, John Anagnostopoulos

\* WIP Renewable Energies, Phone: +49 89 720 12 720, thomas.maidonis@wip-munich.de



Co-funded by the Intelligent Energy Europe Programme of the European Union The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information

Owned and Produced by:





Presented by:



Supported by:

www.powergeneurope.com www.renewableenergyworld-europe.com