

Case Study on Electricity Storage Requirements in the Combined Systems of Austria and Germany

Hans Auer, Karl Anton Zach Energy Economics Group (EEG) Vienna University of Technology

Thomas Weiss, Detlef Schulz Electrical Power Systems Department Helmut Schmidt University, Hamburg

EU PVSEC 2013, Paris 2nd October 2013

- Analysed 2050 Scenarios for Austria & Germany
- Simulation Results for the combined System AT-DE
- Conclusions / Open Questions

Analysed Scenarios for Austria & Germany

[MW]	DE - 2050 Scenarios			AT - 2050 Scenarios		Total AT-DE	
	Α	В	С	В	С	BC	CC
Wind (onshore)	60,000	63,000	55,000	4,240	4,710	67,710	59,710
Wind (offshore)	26,000	30,000	21,000	0	0	30,000	21,000
PV	70,000	45,000	100,000	7,880	26,000	71,960	126,960
Hydropower Run-of-River HES PHES Small Hydropower	5,700 8,000			7,200 3,600 9,200 250		12,900 3,600 17,200 250	
Other RES-E	4,200 4,200 4,200		2,430	2,000		7,000	
Yearly Peak Load		79.1		20.7	13.6	92.5	92.5
Energy Consumption [TWh]	~500			126	83	~583	~583
RES-E Generation [TWh]	~400			75	94	~494	~494
RES-E Share*	~80%	~80%	~80%	~60%	~110%		

* On net electricity consumption, not electricity generation.

Rejected Energy in Case of no Storage

2050 Scenario	Max. rejected power [GW]	Rejected Energy [TWh]
DE – A	51.15	21.72
DE – B	38.85	15.85
DE – C	69.09	29.04
AT – B	0	0
AT – C	12.18	7.69
BC	43.07	11.34
CC	70.54	24.96

Residual Load in 2050 Scenario AT-C

02/10/2013

Storage Needs of the Isolated Systems AT & DE

2050 Seenario	Additionally nee	Additionally needed	
2050 Scenano	Charing	Discharging	capacity [GWh]
DE – A	38.79	25.17	1,308
DE – B	31.85	25.74	1,534
DE – C	55.16	29.04	950
AT – B	0	0	0
AT – C	3	0	0

2050

Storage Needs in the Combined System AT-DE

nergy

2000	Country		I TOVIGEG ETTERSY			
Scenario	Country	[GWh]	[GWh]	Charge	Discharge	
PC	DE	17,111	13,838	8.0	8.0	
ВС	AT	27,005	21,399	36.4	37.2	
<u> </u>	DE	20,174	16,321	8.0	8.0	
CC	AT	44,102	35,672	59.2	37.7	

Limited Transmission Capacity

- Limiting the transmission capacity to the expected installed power of Austrian PHES systems in 2050 – 9.2 GW
- Rejected energy in the combined system AT-DE can be reduced from 25 TWh to 9 TWh (Scenario CC)
- More energy would get lost when using less efficient technologies like power-to-hydrogen or power-to-gas

Limited Transmission Capacity

2050 Scenario	Country	Stored Energy	Provided	Max. used power [GW]	
	Country	[GWh]	Energy [GWh]	Charge	Discharge
вс	DE	20,228	16,365	8.0	8.0
	AT	20,859	16,762	9.2	9.2
CC	DE	17,161	13,878	8.0	8.0
	AT	20,326	16,020	9.2	9.2

Capacity Factor of the German and Austrian PHES Systems

	German PHES			Austrian PHES			
	Charge	Disch.	Total	Charge	Disch.	Total	
AC	24.5%	19.8%	44.3%	25.2%	19.9%	45.1%	
BC	28.9%	23.4%	52.2%	25.9%	20.8%	46.7%	

Conclusions

- High energy storage potential in the Austrian Alps (i.e. pumped-hydro)
- Development of this potential has advantages for both electricity systems AT & DE
- Transmission capacity & energy storage needs are too high for a full exploitation of RES-E potential available in both countries
- By increasing the transmission capacity from 2.2 GW to 9.2 GW in 2050, the rejected energy in the worst case scenario in the combined system AT-DE could be reduced from 25 TWh to 9 TWh
- Open questions / simplification of analysis:
 - Public opinion / opposition against new PHES & transmission lines
 - Determining the actual usable potential in the Austrian Alps
 - Taking into account other system dynamics of the reservoirs (e.g. snowmelt, rain and downstream riverchains of Austrian hydropower plants)

Thank you for your Attention!

Hans Auer, Karl Anton Zach

Energy Economics Group (EEG)

Vienna University of Technology

Tel.: +43-1-58801-370357

Email: <u>auer@eeg.tuwien.ac.at</u>

zach@eeg.tuwien.ac.at

http://www.eeg.tuwien.ac.at

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

Centro nacional de energías renovables national renewable energy centre

Malachy Walsh and Partners Engineering and Environmental Consultants

